Accept Merge Request #491: (feature/快速订单 -> develop)

Merge Request: 快速订单代码还原

Created By: @杨金灵
Accepted By: @杨金灵
URL: https://jikimo-hn.coding.net/p/jikimo_sfs/d/jikimo_sf/git/merge/491?initial=true
This commit is contained in:
杨金灵
2023-10-24 10:30:06 +08:00
committed by Coding
2 changed files with 25 additions and 25 deletions

View File

@@ -2,7 +2,7 @@
import logging import logging
from odoo.modules import get_resource_path from odoo.modules import get_resource_path
from odoo import fields, models, api from odoo import fields, models, api
#from quatotion import readSql, feature_recognize, auto_quatotion from quatotion import readSql, feature_recognize, auto_quatotion
__author__ = 'jinling.yang' __author__ = 'jinling.yang'
_logger = logging.getLogger(__name__) _logger = logging.getLogger(__name__)
@@ -24,14 +24,14 @@ class AutoQuatotion(models.Model):
def get_process_time_db_path(self): def get_process_time_db_path(self):
return get_resource_path('sf_sale', 'models', 'process_time.db') return get_resource_path('sf_sale', 'models', 'process_time.db')
# def get_auto_quatotion(self, stp_url, feature_full_path, process_time_db_path, model_code): def get_auto_quatotion(self, stp_url, feature_full_path, process_time_db_path, model_code):
# ''' '''
# 通过打包好的.so库 通过打包好的.so库
# 以调用autoQuatotion库中Quatotion类 以调用autoQuatotion库中Quatotion类
# 初始化后调用类的analyseShape方法对模型文件进行价格预测 初始化后调用类的analyseShape方法对模型文件进行价格预测
# ''' '''
# # 初始化自动报价类(输入特征数据库和加工时间数据库) # 初始化自动报价类(输入特征数据库和加工时间数据库)
# reader = auto_quatotion.Quatotion(feature_full_path, process_time_db_path) reader = auto_quatotion.Quatotion(feature_full_path, process_time_db_path)
# # 获取价格、加工时间、尺寸、XYZ、翻面次数 # 获取价格、加工时间、尺寸、XYZ、翻面次数
# feature_info = reader.analyseShape(stp_url, InfoJson={}) feature_info = reader.analyseShape(stp_url, InfoJson={})
# return feature_info return feature_info

View File

@@ -89,10 +89,10 @@ class QuickEasyOrder(models.Model):
# 将attach的datas内容转为glb文件 # 将attach的datas内容转为glb文件
def transition_glb_file(self, report_path, model_code): def transition_glb_file(self, report_path, model_code):
# output_file = os.path.join('C:/Users/43484/Desktop/机企猫工作文档', str(model_code) + '.stl') shapes = read_step_file(report_path)
output_file = os.path.join('/tmp', str(model_code) + '.stl') output_file = os.path.join('/tmp', str(model_code) + '.stl')
write_stl_file(shapes, output_file, 'binary', 0.03, 0.5)
# 转化为glb # 转化为glb
# output_glb_file = os.path.join('C:/Users/43484/Desktop/机企猫工作文档', str(model_code) + '.glb')
output_glb_file = os.path.join('/tmp', str(model_code) + '.glb') output_glb_file = os.path.join('/tmp', str(model_code) + '.glb')
util_path = get_resource_path('sf_dlm', 'static/util') util_path = get_resource_path('sf_dlm', 'static/util')
cmd = 'python3 %s/stl2gltf.py %s %s -b' % (util_path, output_file, output_glb_file) cmd = 'python3 %s/stl2gltf.py %s %s -b' % (util_path, output_file, output_glb_file)
@@ -120,17 +120,17 @@ class QuickEasyOrder(models.Model):
model_code = hashlib.sha1(base64_datas.encode('utf-8')).hexdigest() model_code = hashlib.sha1(base64_datas.encode('utf-8')).hexdigest()
logging.info("模型编码: %s" % model_code) logging.info("模型编码: %s" % model_code)
item.model_file = self.transition_glb_file(report_path, model_code) item.model_file = self.transition_glb_file(report_path, model_code)
# ret = self.feature_recognition(report_path, model_code) ret = self.feature_recognition(report_path, model_code)
# logging.info("自动报价返回值: %s" % ret) logging.info("自动报价返回值: %s" % ret)
# boxshape = ret['boxshape'].tolist() boxshape = ret['boxshape'].tolist()
# logging.info("自动报价boxshape: %s" % boxshape) logging.info("自动报价boxshape: %s" % boxshape)
# logging.info('自动报价feature_infos:%s' % ret['feature_infos']) logging.info('自动报价feature_infos:%s' % ret['feature_infos'])
# item.model_length = boxshape[0] # 长 单位mm item.model_length = boxshape[0] # 长 单位mm
# item.model_width = boxshape[1] # 宽 item.model_width = boxshape[1] # 宽
# item.model_height = boxshape[2] # 高 item.model_height = boxshape[2] # 高
# item.model_volume = boxshape[0] * boxshape[1] * boxshape[2] item.model_volume = boxshape[0] * boxshape[1] * boxshape[2]
# item.model_feature = json.dumps(ret['feature_infos'], ensure_ascii=False) item.model_feature = json.dumps(ret['feature_infos'], ensure_ascii=False)
# self._get_price(item) self._get_price(item)
else: else:
item.model_file = False item.model_file = False
item.model_feature = False item.model_feature = False